Presenting Author Name

Angela Krutish

Presenting Author Category

Non-Trainee

Research Category

Clinical

Abstract Title

Exome and genome sequencing are not enough: The role of multi-omics in understanding rare genetic diseases

Background

While exome and genome sequencing (ES/GS) are increasingly offered to patients with suspected rare genetic diseases (RD), fewer than half receive a diagnosis from these tests. For those who receive a diagnosis, there may be little known about the condition and limited treatment options. Other omics modalities may help resolve molecular diagnoses and improve our understanding of disease pathogenesis.

Objective

Enhance genomic variant interpretation and elucidate etiologies of RD.

Methods

The multi-omics pipeline of the Mainstreaming Genomics in Manitoba research study brings together six research scientists. Patients with non-diagnostic genetic testing (i.e., variant of uncertain significance/VUS or uninformative results) or known genetic conditions with poorly understood pathogenesis are referred. We present illustrative cases that highlight the utility of omics modalities.

Results

Case 1 is a 32-yr female with a clinical diagnosis of hypophosphatemic rickets made by skeletal survey. While ES did not identify any causative variants, RNA sequencing detected an aberrant PHEX transcript. Case 2 is a 64-yr female with gait instability and incoordination at 28-yrs and later, weakness in the upper extremities and hip flexors. ES identified a heterozygous truncating VUS in LDB3; however, loss-of-function is not a recognized mechanism of this disease. Quantitative proteomics of patient and matched control biopsies showed ~50% reduced full-length LDB3, preliminary evidence of loss-of-function as a disease mechanism. Case 3 is a 22-yr female with epilepsy and two GOSR2 VUS in trans. Ubiquitous overexpression of the variant cDNAs in Drosophila models led to viable, normal flies, suggesting both cause loss-of-function. Cases 4 to 6 are patients with known hypophosphatasia. Patient-specific induced pluripotent stem cell models were differentiated into osteoblasts. Cellular assessment revealed energy deficits, metabolic reprogramming, and mitochondrial dysfunction, potential therapeutic targets.

Conclusion

The cases described here demonstrate the utility of various omics modalities to resolve diagnoses and better understand RD.

Authors

Name	Role	Profession
Angela Krutish	Presenting Author	
Rebekah-Kukurudz-Gorowski	Co Author	
Paul Marcogliese	Co Author	
Athanasios Zovoilis	Co Author	
Angeliki Pantazi	Co Author	
Luba Degani	Co Author	
Ma.Immanuel Reyes Madlangsaka	Co Author	
René Zahedi	Co Author	
Richard LeDuc	Co Author	
Michel Aliani	Co Author	
Abhay Srivastava	Co Author	
Sanjiv Dhingra	Co Author	
Aizeddin A. Mhanni	Co Author	
Cheryl Rockman-Greenberg	Co Author	