Presenting Author Name

Ghazale Farjam

Presenting Author Category

PhD Student

Research Category

Community Health / Policy

Abstract Title

Prenatal Exposure to Ambient PM_{2·5} and Risk of Congenital Surgical Anomalies in Manitoba: A Population-Based Case–Control Study

Background

Climate change is increasing the frequency and severity of wildfires, elevating population exposure to fine particulate matter ($PM_{2\cdot 5}$). The effects of prenatal $PM_{2\cdot 5}$ exposure on congenital surgical anomalies are unknown.

Objective

We evaluated whether pregnancy-average ambient $PM_{2.5}$ in Manitoba was associated with congenital surgical anomalies or necrotizing enterocolitis (NEC).

Methods

We conducted a population-based case—control study of children born in Manitoba with conception dates 2002–2023. Cases included children with NEC or any of eight congenital surgical anomalies identified from a retrospective database. Up to ten birthdate—matched controls per case were included. Maternal region of residence during pregnancy was linked to National Air Pollution Surveillance (NAPS) PM_{2.5} monitors; daily values were aggregated to pregnancy-average PM_{2.5}. Logistic regression models evaluated associations between pregnancy-average PM_{2.5} and case status, adjusting for maternal region (North, West and Winnipeg) and season of conception. Subgroup analyses were performed for each surgical anomaly.

Results

We included 9,023 children (822 cases, 8,201 controls). Overall pregnancy-averaged $PM_{2.5}$ was not associated with case status (adjusted OR=1.00; p>0.9); therefore, we explored the effect of geographical region and conception season. The odds of mothers from the Winnipeg region bearing a case were lower than mothers from the North region (OR=0.81; p=0.039). In the subgroup analyses, West region mothers had increased odds of having a child with Hirschsprung disease compared to North region mothers (OR=2.91; p=0.038). Odds of NEC were lower after conceptions in the spring (OR=0.63; p=0.02) and fall (OR=0.67; p=0.04) compared to conceptions in the winter.

Conclusion

In Manitoba ambient $PM_{2.5}$ was not associated with congenital surgical anomalies or NEC. Larger studies with finer spatial exposure assessment are needed to clarify whether wildfire-driven $PM_{2.5}$ influences congenital surgical anomaly outcomes. Regional and seasonal differences point to potential area-level drivers (e.g., access to care, socioeconomic or other environmental exposures) that need further investigation.

Authors

Name	Role	Profession
Ghazale Farjam	Presenting Author	Graduate
Suyin A. Lum Min	Co Author	Assistant Professor
Richard Keijzer	Co Author	Full Professor
Julien Arino	Co Author	Full Professor