Presenting Author Name

Azadeh Dalvand

Presenting Author Category

Non-Trainee

Research Category

Basic Science

Abstract Title

Oxidized Phospholipids Inhibit Glucocorticoid Receptor Nuclear Translocation and Expression of Antiinflammatory Genes in Airway Epithelial Cells:

Background

Inhaled glucocorticoids (GC) are primary controller therapies for asthma. Upon binding GC, glucocorticoid receptors (GR) translocate to the nucleus, bind GRE elements, and activate anti-inflammatory gene transcription. Oxidized phosphatidylcholines (OxPAPC) accumulate in the airways of asthmatics to promote cytokine release, airway narrowing and airway hyperresponsiveness. OxPAPC activate intracellular kinases, and transient receptor potential ankyrin 1 (TRPA1)-mediated Ca2+ influx in airway epithelial and smooth muscle cells.

Objective

We tested the hypothesis that OxPAPC inhibit GC-induced anti-inflammatory gene expression by modulating nuclear translocation of GR.

Methods

We measured fluticasone propionate (FP; 1μM, 5 hrs) induced transcription in the human bronchial epithelial luciferase reporter cells, 2XGRE-BEAS 2B. In some experiments, we pre-exposed cells to pathophysiological concentrations of OxPAPC (80μg/mL, 0-18 hours). Luciferase was measured by Firefly Luciferase assay. In some studies, we pre-incubated cells with TRPA1 inhibitor (HC030031, 10μM). We used qRT-PCR to measure GC-inducible mRNA (below), and tracked nuclear co-localization of GR using quantitative fluorescent immunocytochemistry. Expeeriments included at least five replicates, and data was analyzed using one-way ANOVA and Dunnett's post hoc testing.

Results

In 2xGRE BEAS-2B cells, OxPAPC pre-exposure time dependently reduced FP-induced luciferase transcription up to 62% (3,641 \pm 29.7 vs 9,622 \pm 705.7 units, 18hrs). TRPA1 inhibition did not alter FP-induced luciferase, however it markedly inhibited OxPAPC suppression of FP-induced genes: KLF9 (-93.7%, p<0.01), FKBP5 (-94.8%, p<0.001) and GILZ (-79.8%, P<0.058). TRPA1 inhibition partially (~25%), but not significantly, reversed the suppressive effects of OxPAPC. Nuclear co-localization of GR after FP exposure (1 μ M, 2 hrs) was also inhibited by OxPAPC (40 μ g/mL) (ie. Nuclear Co-localization Coefficient 0.852 vs 0.621, P<0.01).

Conclusion

OxPAPC reduces GR-dependent transcription and GC-inducible gene expression, likely by inhibiting GR nuclear translocation in airway epithelial cells. This suggests a mechanism for OxPAPC to contribute to steroid insensitivity and promote persistent inflammation in asthma.

Authors

Name	Role	Profession	
Azadeh Dalvand	Presenting Author		
Nathan Varghese	Co Author	Graduate	
Dheerendra Pandey	Co Author	Graduate	
Jigneshkumar Vaghasiya	Co Author	Graduate	
Robert Newton	Co Author	Full Professor	
Andrew Halayko	Co Author	Full Professor	