CHRD 2024: Abstract Submission Form

Presenter Name

Deanne Nixie Miao

Role in the project

Perform Experiments Analyze Data Write Abstract

Presenter Status PhD Student

Research Category Basic Science

Title

Leveraging Large-scale Datasets and Single Cell Omics Data to Develop a Polygenic Score for Cisplatininduced Ototoxicity

Background

Cisplatin-induced ototoxicity (CIO), characterized by irreversible and progressive bilateral hearing loss, is a prevalent adverse effect of cisplatin chemotherapy. This adverse drug reaction disproportionally affects children, who are at a three-fold higher risk of developing CIO. Genetic variants contribute to CIO and genome-wide association studies (GWAS) have highlighted the polygenicity of this adverse drug reaction.

Objective

To use genomic data to predict CIO.

Methods

We developed a hearing loss polygenic score (PGSHL) using UKBiobank data (n=353,983) and SBayesR. To enhance the relevance of this score to CIO (PGSCIO), we used murine inner ear single nuclei RNA sequencing (snRNA-seq) data and Milo-R to identify cells that exhibited differential abundance post-cisplatin treatment, and selectively included variants mapping to differentially expressed genes. We tested the association between the two PGSs and CIO in two independent CIO cohorts: the PanCareLIFE (PCL) cohort (n=390) and the St. Jude Children's Research Hospital (SJMB) cohort (n=238), using ReACt and logistic regression.

Results

PGSCIO (P=5.54x10-5, R2=0.041) outperformed PGSHL (P=2.93x10-3, R2=0.023) in predicting CIO in the PCL cohort. PGSCIO was also associated with CIO in the SJMB cohort (P=0.043, R2=0.024). The novel scRNAseq data generated through this study has also enhanced our understanding of the cells and biological pathways underlying CIO. Analysis of these data identified cisplatin-induced changes in the proportion of specific cochlear cell types, including specialized auditory cells, supporting cells, immune cells and bone cells.

Conclusion

We developed the first PGS for CIO using a large-scale hearing loss dataset and a biologically-informed filter from inner ear snRNA-seq data. Our approach offers new avenues for developing pharmacogenomic PGSs, and identified cochlear cells that may play critical roles in CIO. This novel genomic prediction model is of particular importance to children, where hearing loss can cause delays in language development, affecting academic and psychosocial outcomes.

Do you have a table/figure to upload?

No

Authors

Name	Email	Role	Profession
Deanne Nixie Miao	miaodn@myumanitoba.c a	Presenting Author	Graduate Student
Mackenzie Wilke	meccles1959@gmail.co m	Co Author	Graduate Student
John Pham	john.pham@umanitoba.c a	Co Author	Faculty (Data Analyst)
Feryal Ladha	ladhaf@myumanitoba.ca	Co Author	Undergraduate Student
Mansumeet Singh	ms1@myumanitoba.ca	Co Author	Undergraduate Student
Janilyn Arsenio	janilyn.arsenio@umanito ba.ca	Co Author	Assistant Professor
Emilia Luca	emilia.luca@sunnybrook. ca	Co Author	Research Associate
Alain Dabdoub	adabdoub@sri.utoronto.c a	Co Author	Full Professor
Wenjian Yang	wenjian.yang@stjude.org	Co Author	Bioinformatics Research Scientist
Jun J. Yang	jun.yang@stjude.org	Co Author	Full Professor
Britt I. Drögemöller	britt.drogemoller@umanit oba.ca	Co Author	Assistant Professor/Principal Investigator