CHRD 2024: Abstract Submission Form

Presenter Name Sarah Turner

Role in the project Design Analyze Data Write Abstract Presenter Status PhD Student

Research Category Community Health / Policy

Title

Human Milk Oligosaccharides and Cognitive, Language and Motor Development at One Year in the CHILD Cohort Study

Background

Human milk oligosaccharides (HMOs) are complex sugar molecules found in human milk. Emerging research has linked some HMOs to improved neurodevelopment in animal and human studies, but these relationships remain unclear.

Objective

The objective of this research is to examine the link between 19 HMOs and neurodevelopment at one year of age.

Methods

This study includes a subset of 247 parent-infant pairs from the Canadian CHILD cohort study. At 3-4 months post-partum, breastfeeding parents provided a milk sample which was analyzed by liquid chromatography to identify the 19 most prevalent HMOs. Trained research assistants administered the Bayley Scale of Infant and Toddler Development at one year of age which comprised three scales: cognitive, language and motor development (standardized to a mean of 100 and a standard deviation of 15; higher scores indicate better development). Adjusted linear regression was used to estimate the relationship between HMOs and neurodevelopment, controlling for maternal, infant and birth factors. Interactions were tested with infant sex as well as maternal secretor status, a genetic predictor of HMO production.

Results

Higher concentrations of the HMOs 3'-sialyllactose (3'SL) and lacto-N-hexaose (LNH) were related to better language and cognitive scores, respectively (β = 2.09; 95% CI: 0.61, 3.58; β = 2.10; 95% CI: 0.77, 3.43). Higher concentrations of disialyllacto-N-tetraose (DSLNT) were related to lower cognitive, language and motor scores (β = -1.50, -2.15 and -4.00, respectively, all p≤0.05). In interaction models, higher concentrations of 3'SL were related to better language and motor scores for infants of maternal non-secretors. The opposite was true for difucosyllactose-N-hexaose (DFLNH); higher concentrations were related to better language and motor scores for maternal non-secretors. Few sex interactions were observed.

Conclusion

This exploratory study contributes to a growing evidence base that select HMOs are related to infant neurodevelopment. Maternal secretor status may play an important role in moderating the relationship between HMOs and neurodevelopment; however, the direction of these effects are not consistent (i.e. higher concentrations and positive secretor status is not always better). More work is needed before translation into practice can occur.

Do you have a table/figure to upload?

No

Authors

Name	Email	Role	Profession
Sarah Turner	umturn64@myumanitoba .ca	Presenting Author	Graduate
Leslie Roos	leslie.roos@umanitoba.c a	Co Author	Associate Professor
Nathan C. Nickel	nathan.nickel@umanitob a.ca	Co Author	Associate Professor
Piushkumar Mandhane	mandhane@ualberta.ca	Co Author	Associate Professor
Theo J. Moraes	theo.moraes@sickkids.c a	Co Author	Associate Professor
Stuart E. Turvey	sturvey@bcchr.ca	Co Author	Full Professor
Elinor Simons	Elinor.Simons@umanito ba.ca	Co Author	Assistant Professor
Lars Bode	lbode@health.ucsd.edu	Co Author	Full Professor
Bianca Robertson	bmarieinsd@gmail.com	Co Author	
Padmaja Subbarao	padmaja.subbarao@sick kids.ca	Co Author	Associate Professor
Meghan B. Azad	meghan.azad@umanitob a.ca	Co Author	Full Professor