CHRD 2024: Abstract Submission Form

Presenter Name Nicholas Klassen

Role in the project

Perform Experiments Analyze Data Write Abstract

Presenter Status Undergraduate Students

Research Category Basic Science

Title

Diagnostic potential and functional effects of circulating extracellular vesicles in patients with MELAS

Background

Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome is a mitochondrial disorder characterised by progressive muscular and neurological symptoms. MELAS manifests during early childhood, is difficult to diagnose, and has no known cure. Extracellular vesicles (EVs) are lipid-delimited nanoparticles secreted from cells containing biological cargo.

Objective

Here, we investigated the potential of EVs as diagnostic biomarkers of MELAS, and their functional effects on mitochondrial respiration in skeletal muscle myotubes.

Methods

Blood was collected from consented patients with a confirmed MELAS diagnosis (N=9), along with ageand sex-matched healthy controls (under REB# HS25169 [H2021:341]). Plasma was separated, small EVs isolated via size-exclusion chromatography, and characterised by size, concentration, and zeta potential using tunable resistive pulse sensing (Izon). Protein yield was determined by microBCA, and expression of EV-subtype markers quantified by immunoblotting. Oxygen consumption rates (OCR) were measured (Agilent XFe24) in myotubes treated with freshly isolated MELAS-EVs or control-EVs from 33µl plasma (once/day, for 2 consecutive days, 3 technical replicates/subject). Data were analysed using paired t-tests.

Results

Plasma EV concentration (particles/ml) increased by 1.96-fold (p=0.0273, N=9), concomitant with a 45.8% decrease in total protein yield per EV (μ g/particle, p=0.0117, N=9) in MELAS vs. control, with no significant differences in average EV size and zeta potential between groups. Protein expression of small-EV markers TSG101 decreased by 49.8% (p=0.0118, N=8), CD63 decreased by 64.5% (p=0.0001, N=9), and flotillin-1 increased by 1.90-fold (p=0.0245, N=9) in MELAS. Basal OCR was reduced by 12.8% (p=0.0315, N=9), with no difference in maximal OCR, in myotubes treated with MELAS-EVs.

Conclusion

Patients with MELAS had higher plasma EV concentration, with less protein yield/EV, and a remarkably differential expression of small-EV protein markers. MELAS-EVs reduced basal OCR in myotubes. EVs appear to be a promising biomarker for MELAS, and circulating EVs in this population may be perpetuating metabolic dysfunction systemically.

Do you have a table/figure to upload?

No

Authors

Name	Email	Role	Profession
Nicholas Klassen	klass243@myumanitoba. ca	Presenting Author	Undergraduate
Tamiris de Fatima Goebel de Souza	tsouza@chrim.ca	Co Author	Post Doctoral Fellow
Patience O. Obi	obip@myumanitoba.ca	Co Author	Graduate
Berkay Özerkliğ	berkay.ozerklig@umanit oba.ca	Co Author	Graduate
Tiana Tiede	tiedet@myumanitoba.ca	Co Author	Undergraduate
Abhay Srivastava	abhay.srivastava@myum anitoba.ca	Co Author	Post Doctoral Fellow
Sanjiv Dhingra	sdhingra@sbrc.ca	Co Author	Principal Investigator
Cheryl Rockman- Greenberg	cheryl.greenberg@umani toba.ca	Co Author	Principle Investigator
Ayesha Saleem	ayesha.saleem@umanit oba.ca	Co Author	Principle Investigator