

CHRD 2023: Abstract Submission Form

Submitter Name Danish Malhotra

Presenter Name Danish Malhotra

Research Category Basic Science Presenter Status Masters Student

Role in the project Analyze Data Write Abstract

Title

Unraveling the Cellular Sources of Interleukin-1β Production in Amyloid-Forming Human Islets: A Potential Strategy to Enhance Human Islet Graft Survival in Type 1 Diabetes

Background

Type 1 diabetes (T1D) is characterized by immune-mediated destruction of pancreatic beta cells, leading to hyperglycemia. Islet transplantation provides a promising strategy to restore endogenous insulin and normoglycemia in T1D but is limited by insufficient pancreatic donors and islet loss post-transplantation. Islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to loss of beta-cell mass/function in T2D. Amyloid also forms in human islets during pre-transplant culture and post-transplantation, thereby contributing to islet graft failure. We previously showed that amyloid formation promotes islet inflammation and interleukin (IL)-1 β production, leading to β -cell upregulation of Fas cell death receptor and apoptosis.

Objective

Here, we investigated the potential cellular source(s) of IL-1 β production in human islets during ex vivo amyloid formation.

Methods

Isolated human islets (n=5 cadaveric donors) were treated with or without clodronate (deplete macrophages) and cultured in elevated (11.1 mmol/l) glucose (potentiate amyloid formation) for 7 days. Quantitative immunolabeling was performed on paraffin-embedded islet sections for insulin and each IL1β, Fas, TUNEL (apoptosis), thioflavin S (amyloid), and CD68 (macrophage marker).

Results

Freshly isolated human islets had low IL-1 β immunoreactivity. Islet culture resulted in amyloid formation, which was associated with increased islet IL-1 β immunoreactivity (Day 0: 1.0±0.3; Day 7: 8.6±1.7, p<0.05), Fas-positive (Day 0: 0.8±0.2%; Day 7: 4.2±1.1%) and TUNEL-positive β -cells (Day 0: 2.2±0.5%; Day 7: 8.1±1.2%), all of which were markedly reduced by amyloid inhibition. Depletion of islet macrophages markedly reduced, but did not completely block, amyloid-induced IL-1 β immunoreactivity in islet β -cells (Day 0: 0.9±0.2; Day 7: 7.6±2.3; Day 7+clodronate: 2.9±0.1).

Conclusion

These data suggest that macrophages (mainly) and β -cells are two cellular sources of amyloid-induced IL-1 β production in human islets, which leads to Fas-mediated β -cell apoptosis. Blocking islet IL1 β production and/or signaling may provide an effective pharmacological strategy to protect β -cells from amyloid during pre-transplant culture and post-transplantation

Authors

Name	Email	Role	Profession
Danish Malhotra	malhot11@myumanitoba .ca	Presenting Author	Graduate Student
Lucy Marzban	lucy.marzban@umanitob a.ca	Co Author	Associate Professor