

CHRD 2023: Abstract Submission Form

Submitter Name

Dheerendra Pandey

Presenter Name Dheerendra Pandey Presenter Status PhD Student

Research Category

Basic Science

Role in the project Perform Experiments

Title

TRPA1 in human airway fibroblasts: a role for mediating oxidized phosphatidylcholine pathobiology in asthma?

Background

Oxidative stress associated with allergic asthma generates bioactive pro-inflammatory mediators, including oxidized phosphatidylcholines (eg OxPAPC). We reported OxPAPC induces bronchial narrowing and intracellular Ca2+ in human airway smooth muscle cells via transient receptor potential ankyrin 1 (TRPA1). As human airway fibroblasts (HAF) contribute to asthma pathobiology, we screened TRPA1 expression, function and susceptibility to OxPAPC activation in HAFs.

Objective

please refere to uploaded file

Methods

We used qPCR and immunoblotting to assay TRPA1 abundance in primary HAF cultures from central bronchi of resected lung specimens of human donors (4 males, 5 females) undergoing lung surgery. We measured TRPA1-mediated Ca2+ influx in Fluo-4-loaded HAFs in response to TRPA1 agonist (allyl isothiocyanate (AITC, 0.1-3uM)) and OxPAPC (40 μ g /mL), tracking change in fluorescence (F/Fo) with a Cytation 5 reader. Data were analyzed by one-way ANOVA, and Tukey's post hoc test.

Results

qPCR and immunoblotting showed all HAF lines express abundant TRPA1. This was corroborated by Ca2+ imaging: 0.1uM AITC induced a biphasic response, with a peak increase of

4.57±0.27 and an sustained plateau of 2.887±0.24 F/Fo. There were no sex-based differences in TRPA expression or function. Pearson correlation analysis showed significant association between TRPA1 expression and AITC-induced F/Fo. OxPAPC induces an increase in intracellular Ca2+, marked by a rapid rise to peak (F/Fo=1.42±0.005 at 28±4 seconds), and a sustained plateau (F/Fo=1.2±0.005) for up to 3 minutes.

Conclusion

HAF express TRPA1 that can be activated by OxPAPC, which accumulates in airways after allergic challenge. This suggests that OxPAPC could induce a role for HAF in asthma pathophysiology.

Table/Figure File

CHRD Research-Abstract_AH2023.pdf

Authors

Name	Email	Role	Profession
Dheerendra Pandey	pandeyd1@myumanitob a.ca	Presenting Author	Graduate

TRPA1 in human airway fibroblasts: a role for mediating oxidized phosphatidylcholine pathobiology in asthma?

Dheerendra Pandey^{1,2}, Sadish Srinathan³, Biniam Kidane³, Azadeh Dalvand^{1,2} and A. J. Halayko^{1,2}

¹Department of Physiology and Pathophysiology, U of Manitoba, Winnipeg, MB

²Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MBy,

3 Department of Thoracic Surgery, U of Manitoba, Winnipeg, MB

Rationale: Oxidative stress associated with allergic asthma generates bioactive pro-inflammatory mediators, including oxidized phosphatidylcholines (eg OxPAPC). We reported OxPAPC induces bronchial narrowing and intracellular Ca²⁺ in human airway smooth muscle cells via transient receptor potential ankyrin 1 (TRPA1). As human airway fibroblasts (HAF) contribute to asthma pathobiology, we screened TRPA1 expression, function and susceptibility to OxPAPC activation in HAFs.

Methods: We used qPCR and immunoblotting to assay TRPA1 abundance in primary HAF cultures from central bronchi of resected lung specimens of human donors (4 males, 5 females) undergoing lung surgery. We measured TRPA1-mediated Ca²⁺ influx in Fluo-4-loaded HAFs in response to TRPA1 agonist (allyl isothiocyanate (AITC, 0.1-3uM)) and OxPAPC (40 μ g/mL), tracking change in fluorescence (F/Fo) with a Cytation 5 reader. Data were analyzed by one-way ANOVA, and Tukey's post hoc test.

Results: qPCR and immunoblotting showed all HAF lines express abundant TRPA1. This was corroborated by Ca^{2+} imaging: 0.1uM AITC induced a biphasic response, with a peak increase of 4.57±0.27 and an sustained plateau of 2.887±0.24 F/Fo. There were no sex-based differences in TRPA expression or function. Pearson correlation analysis showed significant association between TRPA1 expression and AITC-induced F/Fo. OxPAPC induces an increase in intracellular Ca²⁺, marked by a rapid rise to peak (F/Fo=1.42±0.005 at 28±4 seconds), and a sustained plateau (F/Fo=1.2±0.005) for up to 3 minutes.

Conclusion: HAF express TRPA1 that can be activated by OxPAPC, which accumulates in airways after allergic challenge. This suggests that OxPAPC could induce a role for HAF in asthma pathophysiology.