

# **CHRD 2023: Abstract Submission Form**

Submitter Name Azadeh Dalvand

**Presenter Name** Azadeh Dalvand

Research Category Basic Science Presenter Status Non-Trainee

**Role in the project** Design Perform Experiments Analyze Data Write Abstract

# Title

Pro-inflammatory role of oxidized phospholipids in Tumor Necrosis Factor induced gene transcription and efficacy of glucocorticoid treatment

#### Background

Inhaled glucocorticoids (GCs) are the primary controller therapy for asthma as they suppress persistent inflammation. GCs can stymie pro-inflammatory inducible gene transcription through trans-repression of the NF-kB transcription factor. We have shown that oxidized phosphatidylcholine (OxPAPC) in asthmatic patients is pro-inflammatory. We investigated OxPAPC effects on NF-kB-induced gene transcription, and the inhibitory effects of GCs.

# Objective

To investigate the effect of OxPAPC on NF-kB-induced gene transcription, and the inhibitory effects of GCs.

#### **Methods**

NF-kB luciferase reporter human bronchial epithelial cells, 3kBU BEAS-2B were treated with tumor necrosis factor (TNF) (10ng/mL, 5 hrs). NF-kB inducible transcription was measured by Firefly Luciferase Assay (n=5). Some cultures were also pre-treated with fluticasone propionate (FP). Other cultures were pre-treated with OxPAPC (40 or 80ug/mL) prior to TNF, or TNF/FP. Data were analyzed by one-way or two-way ANOVA.

# Results

TNF triggered a 110 percent increase in NF-kB dependent gene activation. FP decreased TNF-induced luciferase activity in a concentration-dependent manner (maximum suppression 45±20% with 10-5M FP). OxPAPC alone was not sufficient to induce NF-kB dependent transcription, however, OxPAPC pre-treatment increased TNF luciferase activity (19.71±7.10). OxPAPC did not prevent inhibitory effects of FP, but NFkB-induced luciferase activity remained higher after OxPAPC-TNF-FP (16863±5355) compared to FP-TNF (7607±3806).

# Conclusion

GCs inhibit TNF-induced NFkB-dependent gene transcription in human airway epithelial cells. OxPAPC and TNF synergistically activate NFkB-induced gene transcription, resulting in persistence of higher transcriptional activity. This suggests that OxPAPC may contribute to persistent steroid refractory inflammation in asthma.

# Authors

| Name              | Email                           | Role              | Profession     |
|-------------------|---------------------------------|-------------------|----------------|
| Azadeh Dalvand    | Azadeh.Dalvand@umani<br>toba.ca | Presenting Author | Other          |
| Angela Dauqui     | duaquia@myumanitoba.<br>ca      | Co Author         | Other          |
| Katarina Kowatsch | kowatsck@myumanitoba<br>.ca     | Co Author         | Other          |
| Andrew Halayko    | andrew.halayko@umanit<br>oba.ca | Co Author         | Full Professor |