

CHRD 2023: Abstract Submission Form

Submitter Name Patience Obi

Presenter Name Patience Obi

Research Category Basic Science Presenter Status PhD Student

Role in the project Design Perform Experiments Analyze Data Write Abstract

Title

Identification of putative protein targets that mediate enhanced mitochondrial biogenesis in skeletal muscle-derived extracellular vesicles after chronic contractile activity

Background

Extracellular vesicles (EVs) are membrane-bound nanoparticles encapsulating biological cargo, and mediate cellular communication. We have previously shown that skeletal muscle-derived EVs released post-chronic contractile activity (CCA) increased mitochondrial biogenesis (MitoB) in murine myoblasts, but the underlying mechanisms are unknown.

Objective

Here, we investigated the localization of EV protein cargo post-CCA (luminal vs. membrane-bound) and identified putative EV protein targets (using proteomics) that mediate this effect.

Methods

C2C12 murine myotubes were electrically paced (3 hrs/day x 4 days @ 14V, IonOptix). EVs were isolated from conditioned media using differential ultracentrifugation. CCA-EVs were treated with 100 µg/mL Proteinase K (ProK) + 0.1% Triton X-100 (Tr), and then co-cultured with myoblasts for 4 days. Mitochondrial respiration was measured (Seahorse XFe24, Agilent) and data analyzed using Student's t-tests. Liquid chromatography-mass spectrometry (LC-MS/MS) proteomic analysis was performed on control-EVs and CCA-EVs and data analyzed using bioinformatic tools (FunRich, Ingenuity Pathway Analysis, STRING).

Results

CCA-EVs increased basal oxygen consumption rate (OCR) by 52% (p=0.0493, N=6), and maximal OCR by 28% vs. PBS (p=0.0320, N=6). Treatment with ProK + Tr ameliorated this effect (p=0.0292; p=0.0007, N=6). Using LC-MS/MS, a total of 2363 proteins were identified, of which 62 proteins were significantly altered, with 46 increased and 16 decreased in CCA-EVs vs. control-EVs. Pathway analysis identified Cap1-Pfn1-Actn1-Itga6 as significantly altered. These four proteins were also in Top-100 proteins identified in ExoCarta and Vesiclepedia databases. Interestingly, Cap1 and Pfn1 have been reported to mediate mitochondrial function and are both membrane-bound.

Conclusion

Our data show that the CCA-EVs increased basal and maximal OCR, and the effect was mediated by membrane-bound and/or EV corona protein cargo. Additionally, the Cap1-Pfn1-Actn1-Itga6 pathway was significantly increased in CCA-EVs, with all four proteins enriched in EV databases. Our next step will be to validate putative targets to identify proteins regulating the pro-metabolic effects of CCA-EVs.

Name	Email	Role	Profession
Patience O. Obi	obip@myumanitoba.ca	Presenting Author	Graduate
Tamiris F. G. Souza	tsouza@chrim.ca	Co Author	Post Doctoral Fellow
René Zahedi	rene.zahedi@umanitoba. ca	Co Author	Full Professor
Ying Lao	ying.lao@umanitoba.ca	Co Author	Lab Manager
Richard LeDuc	richard.leduc@umanitob a.ca	Co Author	Associate Professor
Joseph W. Gordon	joseph.gordon@umanito ba.ca	Co Author	Associate Professor
Ayesha Saleem	ayesha.saleem@umanit oba.ca	Co Author	Associate Professor