

CHRD 2023: Abstract Submission Form

Submitter Name

Alana Slike

Presenter Name

Alana Slike

Research Category

Basic Science

Presenter Status
PhD Student

Role in the project

Perform Experiments Analyze Data Write Abstract

Title

Genomic Characteristics of Rett Syndrome Modifier Genes

Background

Genetic modifiers are non-primary disease-causing genes that alter the severity of genetic diseases and therefore may act as therapeutic targets. Rett syndrome (RTT) is a rare neurodevelopmental disorder caused by mutations in the X-linked MECP2 gene. Recently, a large RTT modifier screen in Mecp2/Y mice assessed phenotype improvement following mutagenesis and identified 31 RTT modifiers.

Objective

We aimed to examine the human gene-trait associations and drug tractability of each of these genes to help inform future therapeutic assessments.

Methods

Human phenotypes were assessed using v6 of the Open Targets Genetics (OTG) database. To further examine tractability, genetic constraint was examined via gnomAD observed/expected scores and gene variance intolerance ranks. The set of modifiers were also examined by GeneWalk, to determine the important functions of a specific biological context via machine learning. The temporal gene expression patterns of the modifiers were also assessed in BrainSpan.

Results

OTG fine-mapped signals were detected for 16 genes, representing a total of 215 human-trait associations. Traits associated with cognition and neurological function were found. CD22, FAN1 and APOA5 were the least genetically constrained modifiers. FAN1, RAD50, BIRC6 and DENND4A showed a

similar temporal expression profile to MECP2. The top biological processes attributed to RTT modifiers involve regulation of transcription and double-strand break repair.

Conclusion

These analyses have revealed novel human-relevant biology underlying RTT modifiers and will help prioritize functional genomics work to confirm the modifier effect in human stem cells.

Authors

Name	Email	Role	Profession
Alana Slike	slikea@myumanitoba.ca	Presenting Author	Graduate
Galen Wright	galen.wright@umanitoba .ca	Co Author	Assistant Professor