

CHRD 2023: Abstract Submission Form

Submitter Name Nathan Varghese

Presenter Name Nathan Varghese

Research Category Basic Science Presenter Status Undergraduate Students

Role in the project Design Perform Experiments Analyze Data Write Abstract

Title

Deciphering the Oxidized Phospholipid-Protein Kinase C Signalling Axis in Human Airway Smooth Muscle

Background

According to an Asthma Canada report, approximately 317 Canadians, including children, are diagnosed with asthma daily, and a significant number of them are refractory to current therapies. The mechanism of refractory asthma remains unclear. We previously showed that oxidized phosphatidylcholines (OxPC), a mediator of oxidative stress, exacerbates asthma pathobiology (i.e. increased inflammation, bronchodilator insensitivity) via pathways that involve Protein Kinase C (PKC).

Objective

The present study aims to develop protocols to test whether OxPC exposure is sufficient to activate PKC.

Methods

Cultured Human Airway Smooth Muscle (HASM) cells (n= 5 donors) were treated with OxPAPC (the most common variants of OxPC in the lungs) (80 μ g/mL) for 1 to 24 hours. We used untreated cells as a negative control and cells treated with the PKC activator 12-O-Tetradecanoylphorbol-13-acetate (TPA) (0.2uM, 1 hour) as a positive control. After treatment, cell lysates were collected, proteins were separated by 8% SDS-polyacrylamide gel electrophoresis, transferred to nitrocellulose by electroblotting, and PKC phosphorylation was detected using polyclonal anti-pSer660-PKC. Using β -actin as a loading control, pPKC bands were quantified by densitometry using AlphaEase FC software and calculated as % p-PKC increased from baseline.

Results

OxPAPC (80 μ g/mL) exposure for 1 hour in HASM cells significantly induced PKC phosphorylation (203%±187 increase from baseline), which was comparable to induction with the PKC activator, TPA (256%±216) (Figure 1). Interestingly, OxPAPC (80 μ g/mL) treatment for longer periods showed that OxPAPC exposure leads to a sustained increase in PKC phosphorylation (i.e. 222%±169 at 3 hours, 233%±195 at 6 hours, 239%±261 at 24 hours) (Figure 1).

Conclusion

Oxidized phosphatidylcholine causes sustained PKC phosphorylation in HASM cells. This finding confirms the existence of an oxidized phospholipid-protein kinase C signalling axis, furthering our understanding of asthma pathobiology involving mediators of oxidative stress.

Table/Figure File

Figure 1 - NV CHRD Abstract.pdf

Authors

Name	Email	Role	Profession
Nathan Varghese	varghesn@myumanitoba .ca	Presenting Author	Undergraduate Student
Jignesh Vaghasiya	vaghasij@myumanitoba. ca	Co Author	PhD Student
Azadeh Dalvand	azadeh.dalvand@umanit oba.ca	Co Author	Lab Technician
Andrew Halayko	andrew.halayko@umanit oba.ca	Co Author	Full Professor

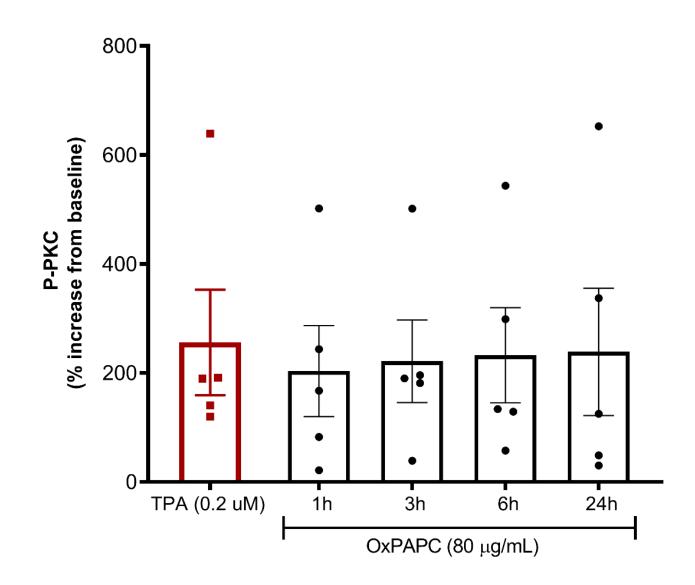


Figure 1: anti-pSer660-PKC % increase from baseline