Potential of extracellular vesicles as biomarkers of mitochondrial dysfunction

¹Biology of Breathing (BoB) Theme, CHRIM ; ²Diabetes Research Envisioned and Accomplished in Manitoba, Winnipeg, Canada; ⁴Children's Hospital Research Institute of Manitoba, Canada; ⁵Faculty of Kinesiology and Recreation Management, University of Health Sciences, University of Manitoba, Winnipeg, MB; ⁷College of Nursing, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB

BACKGROUND

- ✓ Mitochondrial disorders (MD) are caused by dysfunction within the respiratory chain and can be classified as primary or secondary MD.
- Primary mitochondrial disease (PMD) are caused by known mtDNA and nDNA mutations, while secondary mitochondrial dysfunction (SMD) is due to inherited or acquired disorders affecting mitochondrial function and dynamics.
- ✓ Extracellular vesicles (EVs) are important mediators of intercellular communication and show promise as disease biomarkers, but remain unexplored in MD.
- ✓ We hypothesize that EVs can serve as biomarkers of MD.

AIM

- \checkmark To test our hypothesis, we characterized plasma-EVs from a known PMD (MELAS, N=1), 2 patients with hypophosphatasia (HPP) a disorder of skeletal mineralization recently associated with mitochondrial dysfunction and matched controls.
- Compared results to EVs from a hydrogen peroxide (H_2O_2) -induced model of mitochondrial dysfunction.

Tamiris F. G. Souza^{1,2,4,5}, Alexandria Martin⁴, Patience O. Obi^{1,2,4,5}, Benjamin Bydak^{1,2,4,5}, Adrian R. West^{1,4,6}, Joseph W. Gordon^{1,2,4,7}, Cheryl Rockman-Greenberg^{3,4}, and Ayesha Saleem^{1,2,4,5}

Figure 3 – Protein yield and expression of protein markers related to EV subtypes by Western blotting on patients-plasma EVs and conditioned media H₂O₂-EVs. (A) EV protein yield was 1.52, 2.29 and 1.70-fold higher in HPP1, HPP2 and MELAS, and (B) 1.90-fold higher in H₂O₂-EVs vs. control-EVs (p=0.02). (C) Bright-field representative images of control cells and cells treated (6hrs) with H₂O₂ after 18hrs of recovery. (D) Flotillin-1 expression was reduced by 69.54% in patient-EVs, and (E) by 35.4% in H₂O₂-EVs (p=0.03). (F) Cyt-C was differentially expressed in HPP-EVs and lower on HPP1 and undetectable in H2O2-EVs. (G) TSG101 was reduced by 39.1% in MELAS-EVs, 30.48% in HPP-EVs, and (H) 51.81% in H2O2-EVs (p=0.08). (I) ApoA1 expression was lower in patient-EVs vs. controls. Bands were corrected for loading by Coomassie, with multiple proteins run on one gel. The statistical analyses were performed on H_2O_2 -EVs study using Unpaired Student's t-test (N=6).

CHRI CHILD HEALTH RESEARCH DAYS