Cellular uptake of breast milk-derived extracellular vesicles is higher in mothers with asthma in a transwell model of the gastrointestinal barrier

¹Children's Hospital Research Institute of Manitoba (CHRIM). ²Faculty of Kinesiology and Recreation Management, University of Manitoba, Canada. ³The Manitoba Interdisciplinary Lactation Centre (MILC). ⁴Department of Surgery, Pediatrics & Child Health and ⁵Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences; ⁶Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba, Canada. ⁹Department of Pediatrics, Faculty of Medicine, University of Alberta, Canada. ¹⁰Department of Pediatrics, Faculty of Medicine, University of Toronto, and ¹²Hospital for Sick Children, Toronto, Canada.

Introduction

1. Development of asthma in children:

- Asthma is one of the most common chronic diseases in children, characterized by airway inflammation, remodeling and hyperresponsiveness.
- It has a substantial impact on health, quality of life and the economy.

2. Asthma and breastfeeding:

- Asthma in children has been linked with breastfeeding, though evidence is mixed with regards to its effect on asthma development.
- Components of breast milk (BM) likely play a critical role in determining the effect of breastfeeding on asthma development in offspring.

3. Role of BM-extracellular vesicle (EVs) in asthma:

- EVs are small lipid membrane-bound vesicles that enclose biological cargo and constitute a primary form of cellular crosstalk.
- EVs are detected in all biofluids and are an understudied breast milk component.

The specific role of **BM-EVs** in inducing or preventing asthma has not been elucidated to date. Preliminary data from our group illustrate anti-inflammatory effects of BM-EVs from mothers with asthma on primary human airway smooth muscle cells. We do not know if this is due to differential cellular uptake of BM-EVs nor if it is consistent across cell types.

Objectives

To determine whether the effect of BM-EVs is contingent on cellular uptake, we established an in vitro transwell coculture model to elucidate if BM-EVs:

- 1) pass intestinal epithelial cell (Caco-2) barrier,
- 2) are taken up by macrophage cells (THP-1), and
- 3) if uptake is dependent on maternal asthma status.

Samira Seif^{1,2,3}, Benjamin Bydak^{1,2}, Wai Hei Tse^{1,4,5}, Taiana M. Pierdoná^{1,2}, Tamiris F. G. Souza^{1,2,3}, Patience O. Obi^{1,2}, Alexandria Martin¹, Chengbo Yang⁶, Joseph W. Gordon^{1,7}, Stuart Turvey⁹, Elinor Simons^{1,8}, Piushkumar Mandhane¹⁰, Padmaja Subbarao^{11,12}, Andrew J. Halayko^{1,5}, Meghan B. Azad^{1,3,8} and Ayesha Saleem^{1,2,3}

