Dose of isotonic fluid associated with lower risk of serum sodium overcorrection in pediatric patients with chronic hypovolemic hyponatremia

Dr. D. Kroft, Dr. V. Brulé, Dr. A. Dart

University of Manitoba, Department of Pediatrics and Child Health

INTRODUCTION

- Hyponatremia (serum Na <135 mEq/L) is the most common electrolyte **disturbance** in hospitalized children, with an incidence of 17-45%.
- Hyponatremia creates an osmolar mismatch between the blood and brain, leading to brain swelling (cerebral edema). When hyponatremia persists >48 hours ("chronic"), the brain attempts to prevent this swelling by shedding osmoles. This leaves the brain vulnerable to demyelination injury when hyponatremia is corrected too quickly.
- Experts estimate a safe speed of correction to be 8-12mEq/L/24 hours.
- **Current management strategies** for treating hypovolemic hyponatremia, which often involve giving isotonic IV fluids, are based on theoretical calculations which are not shown to be sufficiently accurate.
- There have been **no pediatric studies** addressing the optimal isotonic fluid rate needed in order to prevent over-correction, or addressing risk factors for over-correction.

RESEARCH QUESTIONS

1. A) Is there an association between **equivalent isotonic fluid rate** administered within the first 24 hours and risk of over-correction (>10mEq/L/24h)?

B) What is the **highest** equivalent isotonic fluid **rate** which effectively avoids over-correction?

- 2. Is there an association between over-correction and the following cofactors?
 - a) Demographics: age, sex, weight
 - b) Initial labs: serum Na, K, BUN, Cr
 - c) Treatment characteristics: location of treatment initiation, initial fluid type, initial fluid strategy, bolus volume given, number of times fluid rate/composition changed
 - d) Complications: PICU involvement, seizures, diuretics given

HYPOTHESIS

A higher equivalent isotonic fluid rate will be associated with greater risk of over-correction.

ACKNOWLEDGEMENTS: This project is being funded by a CHRIM Resident Small Grant.

METHODS

Retrospective chart review

- Inclusion criteria: Children ages 1 month 18 years of age presenting to the Children's Hospital of Winnipeg between 1990 – 2020 with hypovolemic hyponatremia, defined as:
 - a. Serum Na <135 and:
- i. Meeting Gorelick's simplified dehydration criteria (LR 6.1 for dehydration)
- ii. <u>and/or</u>: overall clinical impression of hypovolemia documented by treating clinician
 - iii. <u>and/or:</u> urine Na <30mEq/L and urine osmolality >100mOsm/L
- b. Inpatients with clear laboratory evidence of hyponatremia persisting >48 hours and clinical dehydration as per criteria i. through iii.

Exclusion criteria:

- a. IV fluids initiated prior to first labs being drawn
- b. Chronic renal, neurologic, or cardiac disease
- c. Evidence of SIADH or pseudohyponatremia
- d. Diuretics or sodium supplements as home medications
- e. Signs/symptoms of cerebral edema on presentation or 3% NaCl given
- f. Blood or albumin given within first 24 hours
- g. Hyponatremia not treated with crystalloid

Statistical methods:

- Descriptive statistics (mean + SD; frequencies; median + IQR as appropriate)
- Simple *t*-tests or chi-squared tests for each variable
- Univariate logistic regression
- Multivariate models

RESULTS

	All Patients	Appropriately Corrected	Overcorrected	Р
Ν	45	17	28	
Age (yrs), median (IQR)	2.5 (5.75)	5.83 (9.33)	1.5 (2.77)	0.007
Sex, n (%) Female Male	13 (28.9) 32 (71.1)	3 (17.6) 14 (82.3)	10 (35.7) 18 (64.3)	0.3384
Weight (kg), median (IQR)	13.5 (12.7)	16.5 (20.5)	11.81 (12.48)	0.05655
Pre-treatment serum Na (mmol/L), median (IQR)	125 (5)	127 (2)	123 (6)	0.001241
Pre-treatment serum K (mmol/L), median (IQR)	4 (1)	3 (1)	4 (2)	0.04694
Mean fluid rate (ml/kg/hr), median (IQR)	2.93 (2.95)	2.23 (1.6)	3.69 (2.53)	0.002781
Bolus volume given (ml/kg), median (IQR)	18.18 (21.01)	17.24 (20.29)	19.47 (29.60)	0.2599
Times fluid rate/composition changed in 24h period, median (IQR)	1 (2)	1 (2)	1 (1)	0.5591
% of total fluid given PO, median (IQR)	0 (23.31)	0 (27.97)	0 (16.10)	0.5825
Evidence of calculation used, <i>n</i> (%) Yes				0.8372
Νο	10 (22.2) 35 (77.8)	3 (17.6) 14 (82.4)	7 (25) 21 (75)	
IV treatment initiated at tertiary centre, <i>n</i> (%) Yes No		16 (94.1) 1 (5.9)	21 (75) 7 (25)	0.3316
Adverse events, <i>n</i> (%) Seizure (Y) Lasix given (Y) PICU involvement (Y)		1 (5.9) 12 (11.8) 4 (23.5)	4 (14.3) 0 (0) 8 (28.6)	

CONCLUSION

- Faster isotonic fluid rate (>3ml/kg/hr)
- Younger age • Lower serum Na at presentation

NEXT STEPS

- In process of completing logistic regression modelling
- Several dozen charts still to review

P-values generated using t-tests for continuous variables and chi-squared tests for binary variables

• Risk factors for over-correction of hypovolemic hyponatremia include:

