

Submitter Email

CHRD 2022: Abstract & Poster Submission Form

Benjamin Bydak	umbydakr@myumanitoba.ca			
Presenter Status O Undergraduate Students				
O Masters Student				
PhD Student				
O Post-Doctoral Fellows				
O Residents				
O Non-Trainee				
Research Category ⊙ Basic Science				
O Clinical				
O Community Health / Policy				
Role in the project ☐ Design				
☑ Perform Experiments				
☑ Analyze Data				
☑ Write Abstract				
Title				
Replicative senescence in pancreatic beta cells alters extracellular vesicle characteristics				

Background

Submitter Name

With an increasing aging population, there is a concomitant increase in age-associated co-morbidities like type 2 diabetes (T2D), wherein a sustained elevated demand for insulin likely drives the accumulation of senescent pancreatic β-cells. Senescent cells secrete higher amounts of pro-inflammatory cytokines as well as extracellular vesicles (EVs). EVs are membrane-bound nanoparticles that are critical in cellular communication and can exert autocrine, paracrine and endocrine effects. EVs vary in size: small-EVs (sEVs) vs. medium/large-EVs (m/IEVs) and enclosed cargo.

Objective

Little is known about EVs released from pancreatic β-cells during replicative senescence.

Methods

Low-passage (LP) and high-passage (HP) murine pancreatic β-cells (MIN6) were grown in EV-depleted media for 48hrs. EVs were isolated from LP (P22-30) and HP (P50-60) conditioned media using differential ultracentrifugation and ultrafiltration, and characterized using tunable resistive pulse sensing (N=6). Cell viability was determined (trypan blue exclusion), cells harvested, and lysates frozen at -80°C for future analysis of senescence markers.

Results

sEV concentration was ~23-fold higher in LP-cells (1.18E+09 particles/ml; p=0.0002) and ~16-fold higher in HP-cells (1.35E+0.9 particles/ml; p<0.0001) vs. m/IEVs in each group, illustrating a preponderance of sEV release from cells irrespective of passage. Comparing between passages, secretion of m/IEVs was 1.77-fold higher in HP-EVs vs. LP-EVs (p=0.02, N=6). No significant increase was observed in sEV secretion from HP vs. LP cells. Average EV size was 9% lower in HP-EVs (113nm) vs. LP-EVs (125nm; p=0.04, N=5). EV protein yield, cell count and viability remained unchanged across groups.

Conclusion

Our data show: 1) a preferential release of small-EVs from MIN6 cells irrespective of passage, 2) HP-EVs are smaller in average size, and 3) a 1.77-fold increase in m/IEVs secretion in HP-MIN6 cells. Overall, there is increased EV release with replicative senescence in MIN6 cells. The upstream pathways regulating EV biogenesis, and the functional effects of senescent cell-derived EVs have yet to be elucidated.

Do you have a table/figure to upload?

O Yes O No

Authors

• For each author, please click "[+] Add Item" and provide the author's information

Name	Email	Role	Profession
Benjamin Bydak	umbydakr@myumanito ba.ca	Presenting Author	Graduate
Marvin Yan	yanm18@mcmaster.ca	Co Author	Other

Patience O. Obi	obip@myumanitoba.ca	Co Author	Graduate
Tamiris F. G. Souza	tsouza@chrim.ca	Co Author	Graduate
Carmen Ching	Carmen_Ching@imcb.a -star.edu.sg	Co Author	Graduate
Adrian Kee Kong Teo	ateo@imcb.a- star.edu.sg	Co Author	Assistant Professor
Ayesha Saleem	ayesha.saleem@umani toba.ca	Co Author	Associate Professor