

Submitter Email

CHRD 2022: Abstract & Poster Submission Form

Alaina Bagan	bagana@myumanitoba.ca
Presenter Status	
Undergraduate Students	
O Masters Student	
O PhD Student	
O Post-Doctoral Fellows	
O Residents	
O Non-Trainee	
Research Category ⊙ Basic Science	
O Clinical	
O Community Health / Policy	
Role in the project ☐ Design	
☑ Perform Experiments	
☑ Analyze Data	
☑ Write Abstract	
Title	
Oxidized Phosphatidylcholine Induced-β2 Adrenergic C Activation in Airway Smooth Muscle Cells	Receptor Desensitization Requires Protein Kinase

Submitter Name

Background

Asthma affects 1 in 10 Canadian children and is characterized by persistent airway inflammation and airway hyperresponsiveness. A significant number of asthmatics are refractory to bronchodilator therapies targeting β 2 adrenergic receptors (β 2AR) in the airways, but the mechanism remains unclear. In cultured human airway smooth muscle (HASM) cells, we showed that oxidized phosphatidylcholines (OxPAPC) induce inflammatory mediator release via pathways involving protein kinase C (PKC) and cyclooxygenase-2 (COX2). OxPAPC also inhibits β 2AR-agonist mediated airway relaxation.

Objective

We hypothesized that PKC, COX2, or both pathways are required for OxPAPC-induced β2AR desensitization.

Methods

Human-telomerase immortalized HASM cells from 5 independent donors were used for experiments. β 2AR-agonist induced cAMP signalling was assessed by tracking phosphorylation of the protein kinase A substrate, VASP, using immunoblotting. Serum starved cells were pre-incubated for 2 hours with PKC inhibitor (GF-109203x, 10 μ M) or COX2 inhibitor (indomethacin, 10 μ M) then treated with OxPAPC (80 μ g/mL) for 24 hours. Controls included: control (media), vehicle (DMSO), inhibitor alone, or OxPAPC alone. Cells were stimulated with isoproterenol (1 nM), a β 2AR agonist, for 7 minutes and cell lysates were obtained for immunoblotting. Using densitometry, band signal was quantified to calculate the % p-VASP. Data was analyzed by one-way ANOVA with Tukey's post-hoc test.

Results

Stimulation with isoproterenol caused a significant increase in cAMP signaling (58.5% p-VASP) compared to unstimulated cells (10.9% p-VASP). OxPAPC pre-exposure significantly reduced cAMP signaling in response to isoproterenol (17.0% p-VASP). Indomethacin did not prevent OxPAPC effects on cAMP signaling (13.5% p-VASP) whereas PKC inhibitor treatment significantly inhibits the suppressive effects of OxPAPC on intracellular cAMP signaling (43.3% p-VASP). All independent controls (media, vehicle, inhibitor alone) showed comparable responses to stimulated cells.

Conclusion

Oxidized phosphatidylcholine requires PKC activation to inhibit β 2AR function in HASM cells. This finding reveals a contributing molecule in the desensitization of β 2AR, furthering our understanding of the mechanism.

Do you have a table/figure to upload?

O Yes O No

Authors

• For each author, please click "[+] Add Item" and provide the author's information

Name Email Role Pr	Profession
--------------------	------------

Alaina Bagan	bagana@myumanitoba.	Presenting Author	Undergraduate Student
Jignesh Vaghasiya	vaghasij@myumanitoba .ca	Co Author	Graduate Student
Azadeh Dalvand	dalvanda@myumanitob a.ca	Co Author	Lab Technician
Andrew Halayko	andrew.halayko@myu manitoba.ca	Co Author	Full Professor