

Altered DNA Methylation in Patients with Youth Onset Type 2 Diabetes in the iCARE Cohort

Nikho Hizon¹, Allison Dart¹, Melissa Gabbs¹, Kurt Kolsun¹, Mario Fonseca¹, Julia L. MacIsaac², Michael S. Kobor², Elizabeth Sellers¹, Vernon W. Dolinsky¹, Brandy Wicklow¹, Meaghan Jones¹

University of Manitoba¹, University of British Columbia²

INTRODUCTION

Youth-onset type 2 diabetes is an increasing burden for youth in Canada. Type 2 diabetes in youth manifests similar to type 2 diabetes in adults with more persistent insulin insensitivity and a faster decline in ß cell function.

Compared to adult-onset type 2 diabetes and type 1 diabetes, youth with type 2 diabetes develop micro- and macrovascular complications much earlier in the disease process.

Understanding the pathophysiology of youth-onset type 2 diabetes is crucial for identifying treatment targets and guiding prevention strategies.

Here, we aim to characterize the DNA methylation patterns associated with youth-onset type 2 diabetes.

MATERIALS

iCARE cohort

A prospective observational cohort study of youth diagnosed with type 2 diabetes prior to 18 years of age. Largest cohort of youth with type 2 diabetes covering diverse geographic and ethnic background in Canada.

ACKNOWLEDGEMENTS

This work was made possible by the continued contributions and guidance of the iCARE Participant Advisory Group and Data Access Committee.

METHODS

- DNA methylation of whole blood tissue from 306 youths was measured using Illumina Infinium MethylationEPIC BeadChip
- Cross-reactive, SNP-affected, and probes in sex chromosomes were filtered out
- R package *limma* was used to fit 704 709 remaining probes into a linear regression model accounting for the following covariates: Age, Sex, Smoking, BMI, Genetic Ancestry, Celltype proportions, and Batch effects.
- Significant results were cross-checked on EWAS atlas for previous association to type 2 diabetes

RESULTS

Figure 1. Chicago plot summarizing results for epigenomewide analyses of associations between childhood-onset type 2 diabetes and blood DNA methylation. 18 CpG sites were found associated to childhood-onset type 2 diabetes (adjusted p-value < 0.05 and effect size > 5). 3 of the 18 CpGs were previously associated with adult-onset type 2 diabetes. 1 864 CpG sites were found to be weakly associated to childhoodonset type 2 diabetes (adjusted p-value < 0.05 and effect > 0.01).

RESULTS

Figure 2. Box plot of DNA methylation levels at cg19693031 (TXNIP) in youth with and without type 2 diabetes. DNA

methylation at TXNIP was 12% lower in youth with type 2 diabetes. We also see an increase in variance and distribution of methylation levels at this CpG in youth with type 2 diabetes. These same differences have been found in adult-onset type 2 diabetes. TXNIP is induced by glucose and plays a role in insulin inhibition. Figure 3. Box plot of DNA methylation levels at cg21860329 (VWA8) in youth with and without type 2 diabetes. DNA methylation at VWA8 was 6% lower in youth with type 2 diabetes. Previous epigenome-wide association studies in adultonset type 2 diabetes have not identified this CpG. VWA8 is a poorly characterized protein that is known to localize to the mitochondrial matrix.

CONCLUSION

Youth-onset type 2 diabetes is an aggressive form of diabetes that reacts poorly to current treatment and is associated with early development of diabetes complications. We have identified a DNA methylation profile for youth-onset type 2 diabetes in a geographically and ethnically diverse cohort across Canada. Majority of the profile we have identified was not previously found in adult-onset type 2 diabetes. This DNA methylation profile builds the basis for future studies to identify pathways involved in youth-onset type 2 diabetes and test utility of these CpGs for risk stratification and guided treatment.

Future Directions

- · Validate this DNA methylation profile in an independent cohort of youth-onset type 2 diabetes
- Identify protective environmental factors that have the opposite effect of youth-onset type 2 diabetes on DNA methylation for preventative strategies

REFERENCES

Viner, White, and Christie, "Type 2 Diabetes in Adolescents."

Dart et al., "The Improving Renal Complications in Adolescents With Type 2 Diabetes Through the REsearch (ICARE) Cohort Study." Li et al., "EWAS Atlas: A Curated Knowledgebase of Epigenome-Wide Association Studies."

