

The Science of Nourishing the Next Generation

CHRD 2021: Abstract & Poster Submission Form

Submitter Name	
Moritz	Markel (1)
First	Last
Email	
moritz.markel@umanitoba.ca	
Research Category: • Basic Science	
O Clinical	
O Community Health / Policy	
What was your role in the project? ☑ Design	
☑ Perform Experiments	
☑ Analyze Data	
☑ Write Abstract	
Presenter Status:	

- O Masters Student
- O PhD Student
- Post-Doctoral Fellows
- O Residents
- O Non-Trainee

Title

DNA-sensing: a potential link between first hit stimuli and inflammatory response in experimental congenital diaphragmatic hernia

Background

Recent scientific advances indicate the immune response to viral infection or pollution could be the first hit stimuli in the pathogenesis of congenital diaphragmatic hernia (CDH). Activation of the DNA-sensing cGAS-STING pathway by increases of double-stranded DNA (dsDNA) presents a possible link between relevant external factors and immune response in the developing embryo.

Objective

We hypothesized that DNA-sensing plays a crucial role in the pathophysiology of CDH.

Methods

To investigate the activation of the cGAS-STING pathway, we treated human BEAS-2B cells with Nitrofen for 24h and performed immunofluorescence staining of cGAS. We further used the Quant-IT™ PicoGreen™ assay to assess dsDNA concentration in cells after 24h Nitrofen treatment. We harvested Nitrofen treated fetal rats at embryonic days E15 and E18. Lungs were sectioned after paraffinembedding and immunofluorescent staining of cGAS was performed.

Results

Treatment of BEAS-2B cells for 24h revealed increased fluorescence intensity of cGAS in cells (area threshold ROI / pixel Control 15.6±3.6, Nitrofen 36.4±12.3; p:0.007). Quant-IT™ PicoGreen™ assay in BEAS-2B cells after 24h treatment with Nitrofen revealed a higher concentration of dsDNA (N=3; Controls: 6.85x10-4±3x10-5 ng/ml, Nitrofen: 8.02x10-4±1.8x10-5; p = 0.01). Immunofluorescent staining for cGAS showed higher relative fluorescence in lung sections of Nitrofen treated pups at E15 (N=4, 1.6-fold increase; p = 0.009) and E18 (N=5, 2.3-fold increase; p<0.0001).

Conclusion

Our data show that Nitrofen treatment is leading to the upregulation of cGAS in the rat model of CDH and human BEAS 2B cells. Furthermore, Nitrofen treated cells showed higher dsDNA concentrations. These results indicate that DNA sensing and dysregulation of the cGAS-STING pathway is a possible link between variable, external activators of an immune response contributing to the pathophysiology of CDH.

Authors

• For each author, please click "[+] Add Item" and provide the author's information

Name	Email	Role	Profession
Moritz Markel	moritz.markel@umanito ba.ca	Presenting Author	
Wai Hai Tse		Co Author	
Nolan DeLeon		Co Author	
Jaida Albrechtsen		Co Author	
Shana Khanamouizadeh		Co Author	
Daywin Patel		Co Author	
Martin Lacher		Co Author	
Richard Keijzer	rkeijzer@chrim.ca	Co Author	Full Professor