

The Science of Nourishing the Next Generation

CHRD 2021: Abstract & Poster Submission Form

Submitter Name

Ahsen

First

Haroon

Last

Email

haroona1@myumanitoba.ca

Research Category:

• Basic Science

- O Clinical
- O Community Health / Policy

What was your role in the project? ☑ Design

☑ Perform Experiments

- ☑ Analyze Data
- ☑ Write Abstract

Presenter Status:

Undergraduate Students

- O Masters Student
- O PhD Student
- O Post-Doctoral Fellows
- O Residents
- O Non-Trainee

Title

Development of a Three-Dimensional (3D) Bioprinted Experimental Model of Rhabdomyosarcoma

Background

Rhabdomyosarcoma (RMS) is a childhood cancer of the skeletal muscle, and is the most common softtissue sarcoma. Treatments for RMS are available, but survivability is low in metastatic tumors.

Objective

Understanding why metastasis is so dangerous in RMS is difficult with current two-dimensional (2D) cell culture models, therefore we aimed to create a more lifelike model of RMS using novel 3D bioprinting technology.

Methods

RMS cells (RH30 or A204) were stained with a fluorescent cell tracker dye (1-5 µM) and imaged for several days to confirm the feasibility of long-term observation. Skeletal muscle was created by bioprinting C2C12 myoblasts in an alginate/collagen/fibrinogen bioink. Pre-stained RMS cells were mixed heterogeneously into C2C12 cells before printing (5% RMS cells), or inserted as a spot tumor during the bioprinting process. Bioprinted constructs were imaged daily by live-cell microscopy.

Results

RMS cells retained the cell tracker dye for several days in 2D culture, and could be easily stained with 5 μ M dye the day before printing. RMS and muscle cells in a heterogeneous mixture printed easily, and the stained RMS cells survived and were trackable for several days within the bioprinted structure. Inserting RMS tumors at specific spots within the muscle presented technical challenges, but RMS cells could be restricted to approximately one quarter of the ring during initial printing. Over time, RMS cells formed clumps and expanded into the surrounding tissue. RH30 cells inserted as a tumor were metastatic within the bioprinted muscle, and were eventually observed throughout the entire structure.

Conclusion

Our 3D bioprinted model of RMS shows great promise as an improved model for studying cancer cell survival and metastasis. Moving forward, we will trial new printing strategies to create more dense tumors, and test the response of bioprinted RMS cells to mitogens and chemotherapy drugs to simulate disease and treatment.

Authors

• For each author, please click "[+] Add Item" and provide the author's information

Name	Email	Role	Profession
Ahsen Haroon	haroona1@myumanitob a.ca	Presenting Author	Undergrad Student
Philip Imasuen	imasuenp@myumanito ba.ca	Co Author	Undergrad Student
Emily Turner-Brannen	ETurner- Brannen@chrim.ca	Co Author	Technician
Javad Alizadeh	alizadej@myumanitoba. ca	Co Author	Grad Student
Saeid Ghavami	Saeid.Ghavami@umani toba.ca	Co Author	Associate Professor
Adrian West	Adrian.West@umanitob a.ca	Co Author	Assistant Professor